Transistors can only “exist” in one of

Two available positions (on or off, 0 or 1). Each one of these positions is called a bit, and their combinations make up all the files and programs you use on a computer. Transistors control the passage of electronic signals. If a signal passes through the logical gate of the transistor, it becomes a bit 1, if it doesn’t, it’s a 0.

This basic model has served

Amazingly well for the last few decades. Thanks c level contact list to the miniaturization of electronic devices and their components, computers grew more powerful, adding millions of transistors that can be as small as 7nm (that’s a 1000 times smaller than a red blood cell!). That worked well for a lot of time – but we’re reaching the point where we won’t be able to develop smaller transistors.

The reason is obvious

There’s a physical limitation that renders content can be a blog post transistors useless. Beyond that minimum size threshold, the electronic current would just bypass the transistors as if they weren’t there. In other words, transistors would be so small that they wouldn’t be able to act as logic gates. Therefore, there would be no 0s and 1s, and no binary system.

This poses a challenge

We could just reconcile with the devices mobile lead we have right now, a balance between small size and processing power. We could also keep adding transistors that are as small as possible – but that would mean that more powerful computers and devices than the ones we have today would have to be bigger to accommodate those extra transistors. Finally, we could replace the binary system altogether and try a new concept, which is precisely what quantum computing is offering.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top